Continuity of Functionals ..and Compact Action of Operators

نویسنده

  • IAN STEWART MURPHY
چکیده

This thesis deals with two topics in Functional Analysis. The first three chapters are concerned with positive linear functionals on Banach *-algebras, whil^ the last two deal with operators that act compactly on an algebra of operators.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On genuine Lupac{s}-Beta operators and modulus of continuity

In the present article we discuss approximation properties of genuine Lupac{s}-Beta operators of  integral type. We establish quantitative asymptotic formulae and a direct estimate in terms of Ditzian-Totik modulus of continuity. Finally we mention  results on the weighted modulus of continuity for the genuine operators.

متن کامل

Approximation Theory and Functional Analysis on Time Scales

Here we start by proving the Riesz representation theorem for positive linear functionals on the space of continuous functions over a time scale. Then we prove further properties for the related Riemann–Stieltjes integral on time scales and we prove the related Hölder’s inequality. Next we prove the Hölder’s inequality for general positive linear functionals on time scales. We introduce basic c...

متن کامل

Shift Invariant Spaces and Shift Preserving Operators on Locally Compact Abelian Groups

We investigate shift invariant subspaces of $L^2(G)$, where $G$ is a locally compact abelian group. We show that every shift invariant space can be decomposed as an orthogonal sum of spaces each of which is generated by a single function whose shifts form a Parseval frame. For a second countable locally compact abelian group $G$ we prove a useful Hilbert space isomorphism, introduce range funct...

متن کامل

Compact composition operators on real Banach spaces of complex-valued bounded Lipschitz functions

We characterize compact composition operators on real Banach spaces of complex-valued bounded Lipschitz functions on metric spaces, not necessarily compact, with Lipschitz involutions and determine their spectra.

متن کامل

A Class of compact operators on homogeneous spaces

Let  $varpi$ be a representation of the homogeneous space $G/H$, where $G$ be a locally compact group and  $H$ be a compact subgroup of $G$. For  an admissible wavelet $zeta$ for $varpi$  and $psi in L^p(G/H), 1leq p <infty$, we determine a class of bounded  compact operators  which are related to continuous wavelet transforms on homogeneous spaces and they are called localization operators.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016